
User’s and
Installation Guide

Portable Simula System

based on C

by
Sverre Johansen
Stein Krogdahl
and Terje Mjøs

Department of informatics
University of Oslo

January 1991

1 Introduction

Cim is a compiler for the programming language Simula, as approved (not yet)
by the SIMULA Standards Group (except unspecified parameters to formal
or virtual procedures). It offers a class concept, separate compilation with
full type checking, interface to external C-routines, an application package for
process simulation and a coroutine concept. Reference is the book: Kirkerud,
Object-oriented programming with SIMULA, Addison Wesley 1989.

Cim is a Simula compiler whose portability is based on the C programming
language. The compiler and the run-time system is written in C, and the com-
piler produces C-code, that is passed to a C-compiler for further processing
towards machine code.

2 Installation

The system is distributed as a compressed tar file. Take the following actions
to install the software:

1

1. Uncompress the tar file with the tar command:

%uncompress cim.tar.Z

2. Extract the file with the tar command:

%tar xf cim.tar

3. List the files with the ls command to verify that you have gotten the
correct files:

%ls

Makefile cim.1 cim.h cim.tar

cimtest.sim cim libcim.a

4. Read the make file, and create the needed directories to run make install.

5. Install the system by entering super user and make install:

%su

Password:

%make install

%exit

6. A simple test of the installation can be made by make test:

%make test

cim -r test

Compiling: test.sim

cc -w -c test.c

cc -o testinst test.o -lcim -lm

Executing testinst:

Installation: No errors found

3 A simple example

We show in this section a simple example of a SIMULA program and how to
compile and run it.

Create a SIMULA program with a text editor, and give it a name with
extension “sim”. In this example we name it doesit.sim:

begin

Outtext("Simula does it in C");

Outimage;

end

2

You can now compile the program with the cim command:

%cim doesit

Compiling: doesit.sim

cc -w -c doesit.c

cc -o doesit doesit.o -lcim -lm

%

The compiler will produce C code that is further processed towards machine
code with a standard C compiler. All produced files have the same name as the
input file, but with different extensions. The compiled and linked program can
be invoked by entering:

%doesit

Simula does it in C

%

4 Compiling

Cim is a Simula compiler that first compiles the source code into C. The C code
will then be compiled with cc, and linked with other modules.

The Cim command will accept one Simula program and other none Simula
modules. The specified Simula program will be compiled and linked with the
modules. If a main Simula program is compiled, it will automatic be linked with
the necessary Simula modules. If a separate Class or Procedure is compiled, then
the linking will be suppressed.

The diagnostics produced by the Simula compiler are intended to be self-
explanatory.

The following options are accepted by the cim command:

• -c
Suppress linking of the complete program.

• -C
Only link the specified files.

• -cc
The following argument is the name of the C-compiler.

• -Dname
Define a symbol name.

• -E
Run only the preprocessor and output the result to standard output.

3

• -g
Make the C compiler produce debugging information. This option is useful
for debugging the generated code.

• -gcc
Invoke the Gnu Project C compiler instead of the standard C compiler.
This option can be used if the standard C compiler don’t generate correct
code.

• -I dir
Use the Simula include file located in directory dir instead of the standard
directory /usr/local/include.

• -l
Omit line number information in the compiled program. This will make
the program smaller and faster.

• -llibrary
Link with object library library. This option is parsed to the link-command.

• -Ldir
Use the Simula library located in directory dir instead of the standard
directory /usr/local/lib.

• -m
The memory pool size may be set at runtime by an option -mn.

• -mn
Set the initial memory pool size to n mega bytes.

• -Mn
Set the maximal memory pool size to n mega bytes.

• -o
The following argument is the name of the output executable file.

• -oc
The following argument will be parsed to the CC-command.

• -ol
The following argument will be parsed to the link-command.

• -q
Run the compiler in quiet mode.

• -r
Run the program after compilation.

4

• -R
Recompile the module using the same timestamp.

• -s
Only C-compile and link the specified files.

• -S
Run the source file through Simula-compiler, only.

• -t
Do not remove temporary files. If a main program is compiled with option
-r, then the executable file will be removed unless this option or option -T
is specified.

• -T
Do not remove the executable file.

• -Uname
Remove any initial definition of the symbol name (Inverse of the -D op-
tion).

• -v
Run the compiler in verbose mode.

• -w
Do not print warnings.

4.1 Arguments

The following arguments are accepted by the Cim command:

• file.a
Library of object files and attribute files. Include this simula library when
compiling and linking. The simula library is created with ar(1V) and
ranlib(1).

• file.o
Object file of other none Simula modules.

• file.sim
Simula source file. A file name without an extension are assumed to be
shorthand notation for the corresponding Simula file.

5 Implementation Aspects

5.1 Language restrictions

A formal or virtual procedure must be specified with respect to its type, and
type, kind and transmission mode of its parameters.

5

5.2 Allowed implementation restrictions

• The type short integer and long real is implemented as integer and real.

• The standard access mode SHARED for files is not implemented.

• The only and default byte size of access mode BYTESIZE is 8.

5.3 Implementation dependent characteristics

• Trailing blanks of image are not transferred to the external file on out-
file.outimage excepts it’s a direct file.

• A parameter to printfile.spacing with value zero gives the standard effect
of overprint.

• The procedures lock and unlock are not implemented.

• All open external files are closed when a program is terminated.

• The following directive lines is supported:

– % whitespace ...
A directive line with a whitespace is treated as a comment line.

– %nocomment ...
The rest of the line is treated as ordinary source text. Some other
simula implementations will ignore this line, and give a warning mes-
sage. But this can be useful as the following example shows. In this
implementation formal procedures must be specified, but that should
not be done in standard simula. This will work both on Lund (Simula
implementation from Lund Software House AB, Sweden) and Cim:

PROCEDURE P(i1,P2);INTEGER i1;

%nocomment PROCEDURE P2 IS

INTEGER PROCEDURE P2

%nocomment (i,j);INTEGER i,j;

;

– %comment

Will cause the compiler to strip all lines until the corresponding
%endcomment is reached. This directive may be nested.

– %eof

Will cause the compiler to react as if the end of the source file was
reached. Include files that is placed in a archive must be preceded
with this directive line.

6

– %casesensitive ON/OFF
The case sensitivity of identifiers and keywords is turned ON or OFF.
Default value is OFF.

– %define name
Define a name. Names such as aix, amigados, convex, cray hp9000s800,
hppa, hpux, i286, i386, i486, mach, minix, msdos, mc68000, mc68010,
mc68020, mc68030, mc68040, m88000, mips, next, ns32000, sony,
sparc, sunos, ultrix, unicos, unix, vax and vms are defined dependent
of the system. The name cim is defined for implementations that is
generating C code.

– %error ...
Will cause the compiler to believe that it has found an error in the
source text. The message that is preceded on the line is printed as
an error message.

– %ifdef name
If name is not defined then the compiler will strip all lines until the
corresponding %else or %endif is reached. If name is not defined
then the compiler will strip all lines between the optional %else and
%endif.

– %include filename
Will cause the compiler to include the indicated file in place of the
INCLUDE directive line. This directive may be nested, but only to
a level of 10.

– %nameasvar ON/OFF
If it is turned ON, then transmission mode for name is implemented
as reference. This will produce more efficient code. Default value is
OFF.

– %staticblock ON/OFF
If it is turned on, then data objects will be allocated static instead
of dynamic, and the compiler may generate more efficient code. This
option should be used with care and should not be used for blocks
which may have more than one active data object at a given time.
The option may not be used for classes that are given as prefix or
virtual procedures or procedures that are parameter to other proce-
dures. It may not be used for external classes or procedures.

– %stripsideeffects ON/OFF
If it is turned ON, then the compiler can generate more efficient code,
but not necessary correct code due to evaluation order for expressions.
Default value is OFF.

– %undefine name
Undefine a name. If the name is not defined the directive line has no
effect.

7

• C is the only language supported for none-Simula external procedures.
“Kind” is interpreted as “C”, and the external-item is case sensitive. Ex-
ternal C procedures must be specified in the following way:

External C procedure external-item is type procedure procedure-identifier
parameter/mode/specification-part ; ;

The rules for external C procedures are:

– Avoid global symbols prefixed with “ ”, it may lead to conflicts with
system names in Cim.

– The procedure may have any type, except ref. If the type is text, then
the null terminated string returned from C is converted to a Simula
text object.

– Parameters may not be a Simula-procedure, switch or label.

– Parameters transmitted by value are always copied. Text or arrays
are allocated by malloc, and are not deallocated by Cim. It’s the
C-programs responsibility to dealloc the space.

– Parameters transmitted by reference or name are transmitted to C
as pointer to. Array or text are transmitted to C by the location of
the first element.

– External C procedures with variable number of parameters can be
specified by use of “...” in the end of the parameter list. Printf and
scanf can be specified as follows:

EXTERNAL C PROCEDURE printf IS

INTEGER PROCEDURE printf(t,...);TEXT t;;

EXTERNAL C PROCEDURE scanf IS

INTEGER PROCEDURE scanf(t,...);NAME ...;TEXT t;;

5.4 Implementation defined characteristics

• The internal character are the same as the standard character set.

• Inlength and outlength are equal to 80.

• SYSIN, SYSOUT and SYSERR is connected to standard input, standard
output and standard error. If they are closed and reopened they are
connected to /dev/tty under UNIX, AIX and MINIX and sys$input

and sys$output under VMS.

• The relative value ranges of real are as double in C and ranges of integer
are as long.

• Conversion from an integer type to a real type are exact except for im-
plementations where integer have better precision than real (which is the
case for the cray implementation.)

8

• The effect is not defined if the range of a numeric item in a de-editing
procedure exceeds the value range of the procedure result.

• The exponent from “putreal” has 5 characters except for the cray imple-
mentation where it may be 6 characters.

• A text frame has a maximum length of about 64K characters.

• The return values of “char” and “rank” are as given by the standard
character set.

• The exact definitions of the standard mathematical functions are system
specific.

• The association between a file object and an external file are standard
procedures based on C’s FILE. The object is connected to the external
file when open is called.

• Several file objects may represent the same external file, but the effect is
not defined if some of them is opened for writing.

• A minimum of checks are performed at “locate”.

• The default value to LINES PER PAGE is MAXINT.

• The “basic random drawing” is implemented as suggested in the standard.

• Two decimals are used for the field for seconds of the function “datetime”.

• Evaluation of arithmetic expressions are based on C, but the Simula ex-
pression are by default divided up in several expressions, to guarantee
correct evaluation order.

5.5 Capacity limitations

The compiler have the following logical limitations:

• The maximal number of Simula-libraries that the compiler can search is
100 libraries.

• Length of a token in the input stream is restricted to about 1000 charac-
ters.

• The nesting of compiler directives is limited to 100.

• The level of nesting of include files must not exceed 10.

• The parser is written i YACC and the parser stack have a size equal 1500
elements.

9

• Block nesting level is limited to 100.

• The compiler builds an expression tree for each Simula-expression, and
one tree is limited to 1000 nodes.

• The code generator have a stack of labels with 1000 elements.

• Temporary expressions may not consist of more than 100 value-type, 100
text, or 100 ref-type elements.

• The nesting of temporary expressions may not be deeper than 100 levels.

• The maximum number of dimensions for arrays is 100.

• Text objects may not contain more than about 64K characters.

• Some other limitations that is based on the underlying hardware or the
operating system, and that is not checked by the compiler.

5.6 Extension to the environment

The following procedures is added to the Simula environment and may be called
directly from Simula:

• PROCEDURE Gbc;...;

The garbage collector is called when the dynamic storage exceeds an im-
plementation dependent limit. The garbage collector traverse and moves
all the accessible objects, and leaves the free space as one area initial-
ized to zero. The garbage collector may be called explicitly through the
procedure Gbc.

• INTEGER PROCEDURE Argc;...;

Returns the number of command-line arguments that the program was
invoked with.

• INTEGER PROCEDURE Argv;...;

Returns a pointer to an array of character strings (in C fashion) that
contains the arguments.

• PROCEDURE Dump(t);TEXT t;...;

Dump the state of the Simula-program to file. Before a call on Dump all
files except SYSIN, SYSOUT and SYSERR should be closed.

• PROCEDURE UnDump(t);TEXT t;...;

Read a previously stored state from file and start the program in that
state. To get these procedures to work, they should be compiled into the
same program. The program may not be re-compiled between a call on
Dump and UnDump.

10

• —tt REF(PrintFile) PROCEDURE SysErr;...;
Returns the file object associated with standard error.

6 Error report

Errors should be reported to cim-bug@ifi.uio.no.

7 Authors

• Terje Møs, Hydro Data, Oslo.

• Sverre Johansen, Department of Informatics, University of Oslo.

• Stein Krogdahl, Department of Informatics, University of Oslo.

11

